
Uzi: The Full-Auto of Code Gen
Devflow, Inc.

June 2025

Abstract. Traditional, single-threaded AI coding workflows restrict exploration and limit the potential
of large language models to generate diverse, high-quality solutions. Uzi is a system for massively parallel
orchestration of AI agents, leveraging Git worktrees, terminal virtualization, and dynamic environment man-
agement to enable high-throughput, conflict-free code generation. Seamlessly integrating with conventional
development workflows, Uzi provides scalable coordination, automated monitoring, and systematic sampling
of the solution space. By reframing AI-assisted development as an orchestration challenge rather than a
prompting task, Uzi offers a practical foundation for managing multiple agents with minimal overhead and
maximal output quality.

Introduction
AI-generated code is the world’s hottest commodity. Since the initial launch video of Devin, tens of billions
(yes, that’s $10,000,000,000+) have been/are being poured and set on fire to win the hearts and minds of
developers.

Marc Andreesen is right about software eating the world. As barriers to entry plummet, the number of
mouths to feed is exploding. Meanwhile, a lot of professional discourse has been on:

• Do we need junior engineers anymore?

• Why are senior engineers not adopting AI as quickly?

• Is AI ruining code quality?

• How many tokens should I give my team?

• What models explore the solution space efficiently?

Classic CTO questions assuming scarcity where abundance abounds and framing AI adoption as a zero-
sum negotiation between humans and machines. Decision-makers with the power to act on these answers
control extremely valuable resources, yet they’re approaching AI reductively, waiting skeptically for the
bubble to burst so they can tout pessimism as wisdom.

Instead, consider the following hypothesis:
If models exhibit entropic behavior in their inputs and outputs, and if tuning tools exist to

influence outputs according to defined criteria, then increasing the number of instances will
accelerate the discovery of optimal solutions.

Enter Uzi, the CLI tool built for high-throughput with AI coding agents. Uzi runs agents in parallel
using git worktrees, creating massive surface area for exploration while keeping every environment isolated
and conflict-free. It plugs directly into existing workflows, respects the tools developers already use, and
brings the kind of raw, industrial-scale firepower the winners of this era want to use.

1

Git Worktrees and Parallel Execution
Git worktrees allow you to check out multiple branches simultaneously in separate directories without re-
dundant repository clones. You’d think it would be a household word at this point, but it’s not.

Manual coordination of multiple AI coding agents is cognitively brutal. Juggling dynamic prompts,
inference costs, and conflicting outputs requires a lot of mental cache. In the product marketplace war, we’re
still volley firing with muskets, spinning wheels hoping for working code. Rules, prompts, and other tools
help but these are not complete solutions.

Figure 1: A metaphor for today’s coding patterns. For a video, click here.

Uzi changes that. It lets you systematically explore the solution space at scale, in parallel, and without
the chaos.

You might be able to guess why it’s called Uzi by now. It’s about rapid, parallel firepower. Traditional
AI coding workflows are painfully sequential: one prompt, one response, one iteration at a time.

Uzi’s architecture weaponizes parallelism through a technical orchestration of:

1. Worktree Manager: Automatically creates and manages isolated git worktrees for each AI agent,
ensuring changes remain conflict-free while sharing the same repository history.

2. Session Controller: Spins up dedicated tmux sessions for each agent, providing terminal isolation
with persistent state.

3. Port Allocator: Dynamically assigns ports from your configured range to each agent’s development
server, preventing conflicts.

4. Agent Monitor: Tracks status and changes in real-time across all parallel instances.

With a single command like

uzi prompt --agents claude:3,codex:2 "Implement user auth"

you deploy five agents simultaneously. Each in its own isolated environment and all working toward the
same goal. When an agent completes its task,

uzi checkpoint agent-name "commit message"

seamlessly merges changes back to your main branch.
This isn’t just a brute force hack. It’s intelligent orchestration that eliminates context-switching and

merge nightmares. While others are still trading fire with their one agent, you’ve saturated the solution
space with parallel exploration, dramatically accelerating development velocity without sacrificing control.

2

https://uzi-site.b-cdn.net/uzi-vid.webm

Technical Capabilities and Implementation
This section provides a technical overview of Uzi’s core capabilities and implementation details. For com-
prehensive documentation and source code, refer to the official GitHub repository.

Parallel Agent Execution Framework
Uzi implements a concurrent execution model that enables multiple AI coding agents to operate simultane-
ously within isolated environments. The command structure

uzi prompt --agents claude:3,codex:2 "Implement a REST API for user management"

initiates five concurrent agent instances (three Claude and two Codex) with identical prompts. The
implementation leverages Go’s concurrency primitives to manage agent lifecycle events and state transitions.

Each agent operates with independent process management, isolated memory space, dedicated I/O chan-
nels, and configurable resource allocation. This parallelization strategy offers several technical advantages
beyond simple throughput improvements. Different AI models employ distinct reasoning approaches and
code generation techniques, allowing for comparative analysis of multiple implementation strategies when
run in parallel. Complex systems can be decomposed into discrete components such as authentication, data
models, and API endpoints, then distributed across specialized agents to enable concurrent development of
interdependent modules. Furthermore, the stochastic nature of large language models means each instance
produces variations in implementation, allowing parallel execution to efficiently sample the solution space
and identify optimal approaches.

Git Worktree Integration
Uzi’s architecture is built around Git’s worktree feature, which enables multiple working trees to be attached
to a single repository. The implementation creates isolated directory structures for each agent while estab-
lishing independent working trees with shared history. This approach maintains separate staging areas and
working directories while preserving repository integrity through atomic operations.

When an agent completes its task, the checkpoint mechanism

uzi checkpoint agent-name "commit message"

performs a series of Git operations. It stages all changes in the agent’s worktree, creates a commit
with appropriate metadata, performs a rebase operation onto the target branch, handles conflict resolution
according to configurable strategies, and preserves commit history and authorship information. This im-
plementation eliminates common collaboration challenges such as merge conflicts and branch management
overhead, while maintaining a clean, traceable development history.

Environment Virtualization
Uzi implements a comprehensive environment virtualization layer that ensures complete isolation between
agent workspaces. Each agent operates within a dedicated tmux session, providing persistent terminal state,
process isolation, signal handling, and output buffering with redirection. The system implements dynamic
port allocation and management with configurable port ranges via uzi.yaml, automatic port assignment
with conflict resolution, service discovery and routing, and health monitoring with failover capabilities.

Each agent environment maintains independent dependency trees with separate package installations,
isolated runtime environments, configurable dependency caching, and reproducible build environments. The
configuration interface is minimalist by design, as shown in this example:

devCommand: cd astrobits && yarn && yarn dev --port $PORT
portRange: 3000-3010

This approach prioritizes developer productivity by eliminating environment-related friction while main-
taining robust isolation guarantees. The virtualization layer abstracts away the complexity of managing
multiple development environments, allowing developers to focus on the code rather than infrastructure
concerns.

3

https://github.com/devflowinc/uzi

Monitoring and Control Systems
Uzi implements a comprehensive monitoring and control plane that provides real-time visibility and man-
agement capabilities. The

uzi ls -w

command provides a real-time view of agent operational status, differential analysis of code changes,
resource utilization metrics, and process health indicators. This continuous monitoring enables developers
to track progress across all parallel agents without needing to manually check each environment.

The system implements a pub/sub architecture for agent communication through the broadcast mecha-
nism. When a developer issues

uzi broadcast "Add error handling to all API endpoints"

this propagates instructions to all active agents through message queuing with guaranteed delivery, state
synchronization, and acknowledgment tracking. This unified communication channel eliminates the need to
repeat instructions to each agent individually.

The

uzi auto

command implements an event-driven automation system that intercepts and processes trust prompts,
handles continuation confirmations, manages error states with recovery, and provides configurable interven-
tion points. This automation reduces the cognitive load on developers by handling routine interactions with
AI agents, allowing them to focus on higher-level tasks.

The monitoring and control systems are designed with a focus on observability and deterministic behavior,
enabling developers to maintain oversight without micromanagement of individual agents. This balance of
automation and control is essential for effectively managing multiple AI agents at scale.

Installation and Deployment
Uzi is implemented in Go, providing cross-platform compatibility and minimal runtime dependencies. The
installation process is straightforward with a simple command:

go install github.com/devflowinc/uzi@latest

The system requires Git for version control and worktree management, Tmux for terminal session man-
agement, Go for installation, and compatible AI tools such as Claude or Codex.

The implementation follows standard Go module conventions and maintains backward compatibility with
existing development workflows and toolchains. This ensures that Uzi integrates seamlessly with established
development practices rather than requiring teams to adopt entirely new workflows.

For detailed installation instructions, configuration options, and advanced usage scenarios, refer to the
official documentation. The documentation provides comprehensive guidance on integrating Uzi into various
development environments and optimizing its use for different project types and team structures.

4

https://github.com/devflowinc/uzi

